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Abstract 
The work is devoted to the problems of processing and visualizing the results of a general-

ized computational experiment. The generalized computational experiment makes it possible 
to carry out parametric studies in a grid partition of the region of the space of defining pa-
rameters. The construction of a generalized computational experiment is based on the syn-
thesis of mathematical modeling, parallel technologies and visual analytics. As a rule, the re-
sults obtained in such an experiment are multidimensional data, on the basis of which the ob-
jective functional is constructed, which is the main object of interest of the researcher. The 
desired end goal is to represent the dependence of the required functional on the defining pa-
rameters in an analytical form. The results of a generalized computational experiment on a 
comparative assessment of the accuracy of different solvers based on the problem of super-
sonic flow around a cone at an angle of attack are considered as an example. The results for 
the objective functional are presented in visual form and in the form of a group of second-
order polynomials. 

Keywords: parametric studies, generalized computational experiment, processing of 
visual results, analytical form. 

 

1. Introduction 
In the 50s of the 20th century, experimental research was the main source of information 

in gas dynamics, since the possibility of numerical modeling did not exist at that time. To car-
ry out parametric studies, a long series of physical experiments had to be carried out. To ob-
tain the necessary information, a huge number of experiments were carried out, and most of 
them were spent on finding out which of the key parameters did not affect the flow under 
study, as noted in [1]. Nevertheless, these gigantic efforts led to the emergence of truly great 
generalizing formulas, which then had a decisive influence on the study of flows for decades 
[1, 2]. 

Now such studies can be carried out on the basis of solving problems of mathematical 
modeling on modern high-performance computing technology. A useful tool for efficiently 
carrying out such calculations can be the construction of a generalized computational exper-
iment. A generalized computational experiment is a computational technology for carrying 
out parametric studies in the space of the defining parameters of the problem under study, 
specified by the ranges of these parameters. This approach is a synthesis of solving problems 
of mathematical modeling based on parallel technologies and the use of visual analytics tools 
for data processing and visualization. In the region of the space of defining parameters, a grid 
partition is carried out. At each point of the grid, the problem of mathematical modeling is 
solved based on parallel technologies in a multitasking mode. The result is multidimensional 
data volumes that require the use of visualization and visual analytics tools to process them. 
The main approaches to scientific visualization in computational gas dynamics are described 
in [3,4]. Note that the general goal of research remains the same as it was many years ago - to 
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obtain expressions for valuable functionals in an analytical form, that is, in the form of for-
mulas. 

It should be noted that parametric numerical studies in computational gas dynamics are 
currently being carried out very actively [5-8]. 

This paper gives an example of plotting dependences for the results of a generalized com-
putational experiment in the problem of comparative estimation of the accuracy of several 
OpenFOAM solvers for a supersonic flow around a cone at an angle of attack. The parameter 
space is formed by three defining parameters - the Mach number, the cone half-angle and the 
angle of attack. Each of these parameters varies within a certain range. The problem at each 
point of the partition of the region of the space of the determining parameters is solved using 
several solvers of the open software package OpenFOAM [20]. The calculation results repre-
sent a multidimensional solution in discrete form. This solution is used to construct a valua-
ble functional, which is an error in comparison with the well-known tabular solution [21], cal-
culated in the L1 and L2 norms. Next, various visual representations of the obtained numeri-
cal data for a valuable functional are created and analytical dependences of the functional on 
the defining parameters are constructed. 

2. Background 
This work is a continuation of a large cycle of works on the development of a generalized 

computational experiment in problems of computational gas dynamics and its application to 
a number of practical problems. 

Earlier in previous works were presented: 
- basic approaches and methods of scientific visualization; [3.9] 
- the basic principles and methods of generalized computational experiment constructing 

for problems of computational gas dynamics; [10-15] 
- the main tasks of data visualization in a generalized computational experiment [16]; 
- a description of the construction and implementation of a generalized computational 

experiment for the problem of flow around cones at an angle of attack for various solvers. The 
problem was considered as a 4-dimensional one, where the Mach number, the cone half-
angle, the angle of attack, and the choice of the solver were considered as 4 variable parame-
ters[17-19]. 

3. Visual representation of target functionals as a function 
of several variables 

In modern computational gas dynamics, today it is realistic to carry out a generalized 
computational experiment with no more than 6 defining parameters. And this is a rather 
unique case. Splitting into 10 points for each of the 6 parameters entails the need to solve 106 
problems. Usually, problems are considered that have 4 or 5 defining parameters. 

The main method for processing data of this dimension is dimensionality reduction, 
which is carried out using variance analysis or transition to the space of the first principal 
components. This makes it possible to use well-developed methods of scientific visualization 
considering target functionals as a function of many variables. 

Visualization is needed, first of all, in order to get a primary idea of the type of function. 
Visualization paves the way for constructing the target functional dependence on the defining 
parameters of a multidimensional problem in an analytical form. It is the construction of ana-
lytical dependencies that is the desired end goal when implementing a generalized computa-
tional experiment. 

Let's consider various ways of visual representation of a function of many variables from 
the point of view of the subsequent analytical presentation. First, consider the function of 2 
variables F (X, Y). Such a function can be quite simply represented in three-dimensional form 
as a surface that depends on two variables (Fig. 1). Function values can be represented by 
contour coloring. 



 

 
Fig 1. An example of a visual representation for function of two variables as 3D surface 

 
Another way of representing is a surface unfolding on a plane of two variables with color-

ing along contours (Fig. 2). 
 

 
Fig 2. An example of a visual representation of a function of two variables  

in the form of a coloring of isolines 
 
Note that such a representation allows one to obtain information about the shape of the 

surface and construct its approximation in an analytical form. For example, in the form of a 
plane or in the form of a second order polynomial. 

For the case of three variables F (X, Y, Z), there are a number of generally accepted op-
tions for visual representation, which, as a rule, are implemented as functional modules in 
software packages for data visualization. For example, in the form of parallel sections (Fig. 3) 
or cross-sections (Fig. 4). 

 



 
Fig 3. An example of parallel sections 

 

 
Fig 4. An example of cross-sections 

 
Such representations allow one to obtain some information about the behavior of a func-

tion of three variables and, of course, do not exclude the possibility of approximating the 
function in one way or another. However, when constructing an approximation, it is often 
quite difficult to correlate the appearance of a function and an analytical dependence. The da-
ta presented in Figures 3 and 4 are not typical cases as they represent the radius of a sphere. 

Let us consider the application of these visualization methods in order to construct an 
analytical dependence for the results of a specific generalized computational experiment for 
the comparative assessment of the accuracy of OpenFOAM solvers on the problem of super-
sonic flow around a cone at an angle of attack. 



4. Analysis of the results of a comparative assessment of 
the accuracy of several solvers for the problem of flow 
around a cone in a parametric setting 

In the generalized computational experiment, a supersonic flow around a cone at an an-
gle of attack is simulated. The Mach number, the cone half-angle and the angle of attack vary 
within certain ranges. The solution is carried out using three different solvers of the Open-
FOAM open software package [20]. Three solvers were chosen for the solution - rhoCentral-
FOAM (rCF), pisoCentralFOAM (pCF), and sonicFOAM. For each fixed triplet of values of the 
defining parameters within the ranges of variation (Mach number, cone half-angle and angle 
of attack), a comparison is made with the well-known tabular solution [21] according to the 
L1 and L2 norms. The problem statement, solution and results are described in detail in [17-
19]. Thus, we get a function of the dependence of the error on 4 variables - three defining pa-
rameters and the choice of a solver. Recall that our main goal is to present the obtained nu-
merical solution in an analytical form. 

First, consider the dependence of the error for the rCF solver at zero angle of attack. In 
this case, we consider a function of two variables - the Mach number and the half-angle of the 
cone. The error surface is shown in Figure 5. 

 

 
Figure 5. Error surface at α = 0° for the rhoCentralFoam solver 

 
We can try to approximate this surface in two ways - either by a plane or by a surface of 

the second order. 
Plane approximation gives the following results. The plane equation is written in general 

form 
AX+BY+CFerr+D = 0 (1) 



Here X is the Mach number M, Y is the half-angle β of the cone, Ferr is the error of com-
parison with the exact solution in the L2 norm. Coefficients A, B, C, D are calculated for a 
specific surface. Figure 5 shows that although the surface is close to a plane, it still differs 
from it. To obtain a more accurate approximation, we build a plane using several different 
triples of surface points, and then we average the coefficients. As a result, we get 

A = 0.292  
B = 0.0277  
C = - 6.2224   
D = 1 
This formula can already be used to interpolate the error, but only for the given solver 

rCF and only for the angle of attack α = 0°. However, further constructions of such surfaces 
with variation of the angle α and with a different choice of the solver showed that the differ-
ence between the surface and the plane sharply increases, which will be seen in the subse-
quent figures. Consequently, plane approximation in the general case of data analysis does 
not suit us. To approximate curved surfaces, we use second-order polynomials, where the er-
ror for the surface under consideration can be represented as a function of the following 
form: 

Ferr = AX + BY + CX2 + DY2 + EXY + F (2) 

Here also X is the Mach number M, Y is the half-angle β of the cone, Ferr is the error of 
comparison with the exact solution in the L2 norm. Coefficients A, B, C, D. E, F are calculated 
for a specific surface. 

Approximating the required surface by a polynomial of the form (2) by the least squares 
method, we obtain 

A = 0.00852295 
B = 0.00564067 
C = 0.0013973125 
D = 0.00014362 
E = 0.00110543 
F = -0.0967782625 
The constructed surface of the second order gives the following deviation from the nu-

merical solution 
Errmin = 0.000174 
Errmax = 0.00482 
Errmean = 0.00232 
Here Errmin is the minimum deviation from the numerical solution, Errmax is the max-

imum deviation, Errmean is the mean deviation. Thus, the obtained approximation by a sec-
ond-order polynomial coincides well with the original surface and can serve as the required 
analytical expression. 

However, this is a solution for a function of two variables Z (X, Y) with a zero angle of at-
tack α = 0° and a fixed choice of the solver rCF. Let us now consider the results for a fixed 
choice of the same solver rCF, but in the form of a function of three variables Ferr (X, Y, Z), 
where X is the Mach number M, Y is the half-angle of the cone β, Z is the angle of attack α, 
Ferr is the comparison error with an exact solution in the L2-norm. 

Figures 6, 7 and 8 show the error function depending on three variables in the form of ex-
ternal boundaries of the volume (Fig. 6), parallel sections (Fig. 7) and cross-sections (Fig. 8). 
Surface coloring corresponds to contours. 

 



 
Figure 6. Visual representation of a function of three variables using coloring of external 

surfaces for the rhoCentralFoam solver 
 

 
Figure 7. Visual representation of a function of three variables by parallel sections  

for the rhoCentralFoam solver 
 



 
Figure 8. Visual representation of a function of three variables by cross-sections  

for the rhoCentralFoam solver 
 
Figures 6,7,8 give us some idea of the behavior of a function of three variables, but in 

terms of hints about how to approximate this function, these figures are clearly not informa-
tive enough. 

Let's use another way. Let us analyze the initial data from the point of view of the vari-
ance of the considered function in all directions. The smallest scatter is observed for the Z di-
rection, i.e. for angle α. 

Let us represent in Figure 9 the sought function in the form of several surfaces of the de-
pendence of the error on two variables X and Y (the Mach number and the angle of the half-
opening of the cone β). Each surface is constructed for its value α = 0o, 5o, 10o. 

 

 
Figure 9. Visual representation of a function of three variables by 3 surfaces 

for the rhoCentralFoam solver 
 



Such a representation allows one to construct a general analytical representation of the 
solution in the form of three formulas of the form (2). The coefficients of the formulas are 
presented in Table 1 for the values α = 0o, 5o, 10o. 

Table 1. Coefficients for the rCF solver 
 α = 0o. α = 5o. α = 10o. 
A 0.00852295 0.0139543625 0.0247155125 
B 0.00564067 0.003608695 0.008172105 
C 0.0013973125 0.00168559375 0.0018172825 
D -0.00014362 -0.00007796 -0.000162213 
E 0.00110543 0.000753045 0.000373555 
F -0.0967782625 -0.07750160625 -0.13618547708 
Let's construct a similar representation for pCF solver. The corresponding surfaces are 

shown in Figure 10. 
 

 
Figure 10. Visual representation of a function of three variables by 3 surfaces  

for the pisoCentralFoam solver. 
 
The analytical presentation of the results for this solver is constructed in a similar way in 

the form of three formulas of the form (2). The corresponding coefficients are presented in 
table 2. 

Table 2. Coefficients for the pCF solver 
 α = 0o. α = 5o. α = 10o. 
A -0.003968725 0.0002224875 0.0112924375 
B -0.003894123 -0.00328819167 0.00056873167 
C 0.001483375 0.00179471875 0.00158521875 
D 0.0000388167 0.000040267 -0.00003554 
E 0.00141366 0.001141345 0.000927375 
F 0.044653067 0.0372670104167 -0.01983530625 
The results for the last solver sF participating in the comparison are presented in Figure 

11 and in Table 3. The appearance of surfaces in Figure 11 unambiguously indicates the need 
for their approximation by second-order surfaces. 



 

 
Figure 11. Visual representation of a function of three variables by 3 surfaces  

for the sonicFoam solver. 
 
Table 3. Coefficients for the sF solver 
 α = 0o. α = 5o. α = 10o. 
A 0.08647875 0.0957112125 0.1270478875 
B 0.02144245 0.0172365783 0.0183578683 
C -0.0038405625 -0.00395865625 -0.00613859375 
D -0.00043633 -0.0003262867 -0.00035893 
E 0.0007405 0.000353035 -0.000037645 
F -0.3955929375 -0.33660227292 -0.37349219375 
Thus, the coefficients in tables 1, 2, 3 for formula (2) fully provide the representation of 

the obtained numerical results of a generalized computational experiment in analytical form. 
The values at the points located between the nodes of the grid division of the region of the de-
fining parameters can be found using interpolation. 

5. Conclusion 
The paper considers the processing and visualization of the results of a generalized com-

putational experiment using a specific example. As an example, we used the results of a gen-
eralized computational experiment on the comparative assessment of the accuracy of three 
solvers of the OpenFOAM open software package. The problem of supersonic inviscid flow 
around a cone at an angle of attack is used as the basic problem. The space of the defining pa-
rameters is set by varying three parameters in the selected ranges - the Mach number, the 
cone half-angle and the angle of attack. For each solver, a discrete solution is obtained in the 
form of a dependence of the error on the governing parameters. A visual representation of the 
solution is shown, analytical forms of the solution are given as a group of 2nd order polyno-
mials. 
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